martes, abril 08, 2008

TERMODINAMIA , OEM ETC.



TERMODINAMICA
hacer click aquí
ONDAS ELECTROMAGNETICAS (OEM)

VEA MULTIMEDIAL ttp://www.walter-fendt.de/ph11s/emwave_s.htm
Las ondas electromagnéticas (OEM) se dispersan en el espacio al igual que lo hacen las ondulaciones que se forman en un lago cuando se arroja una piedra en sus aguas. En el espacio vacío, las ondas electromagnéticas viajan a una velocidad cercana a los 300.000 km/s.
Esta velocidad sería suficiente para dar la vuelta a la tierra en una séptima parte de segundo, o para cubrir los 150 Millones de kilómetros que nos separan del sol en 8 minutos. A través de la materia, tal como el agua o el aire, la radiación electromagnética viaja más lentamente; a mayor densidad de la materia, menor velocidad.
En realidad, es el vínculo entre la electricidad y el magnetismo el responsable de la luz y todas las demás radiaciones del espectro electromagnético, incluidos los rayos X, las ondas de radio y las microondas.
La radiación electromagnética se produce siempre que en un átomo un electrón salta de una órbita a otra más cercana al núcleo. El vínculo existe porque la radiación electromagnética está formada por energía eléctrica y energía magnética en cantidades casi iguales, y la radiación electromagnética se propaga por el universo como ondas interactivas de campos eléctricos y magnéticos. Las ondas electromagnéticas son ondas producidas por la oscilación o la aceleración de una carga eléctrica. Las ondas electromagnéticas tienen componentes eléctricos y magnéticos. La radiación electromagnética se puede ordenar en un espectro que se extiende desde ondas de frecuencias muy elevadas (longitudes de onda pequeñas) hasta frecuencias muy bajas (longitudes de onda altas). La luz visible es sólo una pequeña parte del espectro electromagnético. Por orden decreciente de frecuencias (o creciente de longitudes de onda), el espectro electromagnético está compuesto por rayos gamma, rayos X duros y blandos, radiación ultravioleta, luz visible, rayos infrarrojos, microondas y ondas de radio. Los rayos gamma y los rayos X duros tienen una longitud de onda de entre 0,005 y 0,5 nanómetros (un nanómetro, o nm, es una millonésima de milímetro). Los rayos X blandos se solapan con la radiación ultravioleta en longitudes de onda próximas a los 50 nm. La región ultravioleta, a su vez, da paso a la luz visible, que va aproximadamente desde 400 hasta 800 nm. Los rayos infrarrojos o `radiación de calor' se solapan con las frecuencias de radio de microondas, entre los 100.000 y 400.000 nm. Desde esta longitud de onda hasta unos 15.000 m, el espectro está ocupado por las diferentes ondas de radio; más allá de la zona de radio, el espectro entra en las bajas frecuencias, cuyas longitudes de onda llegan a medirse en decenas de miles de kilómetros.
PROPIEDADES. Las OEM no necesitan un medio material para propagarse. Así, estas ondas pueden atravesar el espacio interplanetario e interestelar y llegar a la Tierra desde el Sol y las estrellas. Independientemente de su frecuencia y longitud de onda, todas las ondas electromagnéticas se desplazan en el vacío a una velocidad c = 299.792 km/s. Todas las radiaciones del espectro electromagnético presentan las propiedades típicas del movimiento ondulatorio, como la difracción y la interferencia. Las longitudes de onda van desde billonésimas de metro hasta muchos kilómetros. La longitud de onda (ë) y la frecuencia (f) de las ondas electromagnéticas, relacionadas mediante la expresión ë·f = c, son importantes para determinar su energía, su visibilidad, su poder de penetración y otras características.
TEORÍA. El físico británico James Clerk Maxwell estableció la teoría de las ondas electromagnéticas en una serie de artículos publicados en la década de 1860. Maxwell analizó matemáticamente la teoría de los campos electromagnéticos y afirmó que la luz visible era una onda electromagnética.
Los físicos sabían desde principios del siglo XIX que la luz se propaga como una onda transversal (una onda en la que las vibraciones son perpendiculares a la dirección de avance del frente de ondas). Sin embargo, suponían que las ondas de luz requerían algún medio material para transmitirse, por lo que postulaban la existencia de una sustancia difusa, llamada éter, que constituía el medio no observable. La teoría de Maxwell hacía innecesaria esa suposición, pero el concepto de éter no se abandonó inmediatamente, porque encajaba con el concepto newtoniano de un marco absoluto de referencia espaciotemporal. Un famoso experimento realizado por el físico estadounidense Albert Abraham Michelson y el químico de la misma nacionalidad Edward Williams Morley a finales del siglo XIX socavó el concepto del éter, y fue muy importante en el desarrollo de la teoría de la relatividad. De este trabajo concluyó que la velocidad de la radiación electromagnética en el vacío es una cantidad invariante, que no depende de la velocidad de la fuente de radiación o del observador.

Son ondas producidas por la oscilación o la aceleración de una carga eléctrica. Las ondas electromagnéticas tienen componentes eléctricos y magnéticos. La radiación electromagnética se puede ordenar en un espectro que se extiende desde ondas de frecuencias muy elevadas (longitudes de onda pequeñas) hasta frecuencias muy bajas (longitudes de onda altas). La luz visible es sólo una pequeña parte del espectro electromagnético. Por orden creciente de longitudes de onda (orden decreciente de frecuencias), se ha confeccionado una escala denominada espectro electromagnético. Esta escala indica que la l puede ser desde miles de metros hasta 0,3 m aproximadamente en el caso de las ondas de radio; desde allí hasta 1 mm las micro ondas; desde él milímetro hasta los 780 mm tenemos a los rayos infrarrojos. La luz visible es una franja estrecha que va desde los 780 mm hasta los 380 mm. La luz ultra violeta se encuentra entre los 3,8 10-7m y los 10-9m (entramos en la medida de los nanómetros). Los rayos x se ubican entre 10-9m y 10-11m. Los rayos gamma están entre los 10-11 m y 10-17m.
La medida de las l suelen medirse en nanómetro, o nm, que es una millonésima de milímetro.
Propiedades: Las ondas electromagnéticas no necesitan un medio material para propagarse; pueden atravesar el espacio desplazandose en el vacío a una velocidad aproximada de 300.000 km/s a la que se denomina con la letra c. Todas las radiaciones del espectro electromagnético presentan las propiedades típicas del movimiento ondulatorio, como la difracción y la interferencia. Las longitudes de onda van desde billonésimas de metro hasta muchos kilómetros. La longitud de onda (l) y la frecuencia (f) de las ondas electromagnéticas, relacionadas mediante la expresión l · f = c, son importantes para determinar su energía, su visibilidad, su poder de penetración y otras características.
Teoría: Ecuaciones de Maxwell
El físico británico James Clerk Maxwell estableció la teoría de las ondas electromagnéticas en una serie de artículos publicados en la década de 1860. Maxwell analizó matemáticamente la teoría de los campos electromagnéticos y afirmó que la luz visible era una onda electromagnética. Un campo eléctrico y otro magnético variables se inducen el uno al otro acoplándose juntos como una onda electromagnética que viaja a través del espacio. En 1865 Maxwell unificó las leyes de Faraday, Gauss y Ampere formando un conjunto de ecuaciones que relacionan entre sí las variaciones espaciales y temporales de la intensidad del campo eléctrico E y la inducción magnética B.
Las ecuaciones de Maxwell
F=q(E+v×B)
Los campos E y B vienen determinados por la distribución de las cargas y por sus movimientos (corrientes). La teoría del campo electromagnético se puede condensar en cuatro leyes denominadas ecuaciones de Maxwell que se pueden escribir de forma integral de la siguiente forma
Ley de Gauss para el campo eléctrico
Ley de Gauss para el campo magnético
Ley de Faraday-Henry
Ley de Ampère-Maxwell
Maxwell a partir de un análisis cuidadoso de las ecuaciones del campo electromagnético llegó a predecir la existencia de las ondas electromagnéticas. Fue Heinrich Hertz quién realizó las primeras experiencias con ondas electromagnéticas.
No es muy complicado obtener las ecuaciones de las ondas electromagnéticas a partir de la expresión en forma diferencial de las ecuaciones de Maxwell. Omitiremos esta deducción y señalaremos únicamente sus características esenciales.
Las ondas electromagnéticas están formadas por un campo eléctrico y un campo magnético perpendiculares entre sí y a la dirección de propagación. La dirección de propagación está dada por el vector E×B.
Las ondas electromagnéticas se propagan en el vacío con una velocidad c.

Para una onda electromagnética armónica las amplitudes de los campos eléctrico E0 y magnético B0 están relacionados, B0=E0/c.
Las ondas electromagnéticas transportan energía y momento lineal.
La energía electromagnética que atraviesa una sección S en la unidad de tiempo es
El momento lineal p por unidad de volumen de una onda electromagnética es el cociente entre la densidad de energía electromagnética y la velocidad c.
p=ε0(E×B)
El espectro electromagnético
Las ondas electromagnéticas cubren una amplia gama de frecuencias o de longitudes de ondas y pueden clasificarse según su principal fuente de producción. La clasificación no tiene límites precisos.
Región del espectro Intervalo de frecuencias (Hz)
Radio-microondas 0-3.0·1012
Infrarrojo 3.0·1012-4.6·1014
Luz visible 4.6·1014-7.5·1014
Ultravioleta 7.5·1014-6.0·1016
Rayos X 6.0·1016-1.0·1020
Radiación gamma 1.0·1020-….
Las ondas de radiofrecuencia. Sus frecuencias van de 0 a 109 Hz, se usan en los sistemas de radio y televisión y se generan mediante circuitos oscilantes.
Las ondas de radiofrecuencia y las microondas son especialmente útiles por que en esta pequeña región del espectro las señales producidas pueden penetrar las nubes, la niebla y las paredes. Estas son las frecuencias que se usan para las comunicaciones vía satélite y entre teléfonos móviles. Organizaciones internacionales y los gobiernos elaboran normas para decidir que intervalos de frecuencias se usan para distintas actividades: entretenimiento, servicios públicos, defensa, etc.
En la figura, se representa la región de radiofrecuencia en dos escalas: logarítmica y lineal. La región denominada AM comprende el intervalo de 530 kHz a 1600 kHz, y la región denominada FM de 88 MHz a 108 MHz. La región FM permite a las emisoras proporcionar una excelente calidad de sonido debido a la naturaleza de la modulación en frecuencia.
Las microondas
se usan en el radar y otros sistemas de comunicación, así como en el análisis de detalles muy finos de la estructura atómica y molecular. Se generan mediante dispositivos electrónicos.
La radiación infrarroja
Se subdivide en tres regiones, infrarrojo lejano, medio y cercano. Los cuerpos calientes producen radiación infrarroja y tienen muchas aplicaciones en la industria, medicina, astronomía, etc.
La luz visible
Es una región muy estrecha pero la más importante, ya que nuestra retina es sensible a las radiaciones de estas frecuencias. A su vez, se subdivide en seis intervalos que definen los colores básicos (rojo, naranja, amarillo, verde, azul y violeta).
Radiación ultravioleta
Los átomos y moléculas sometidos a descargas eléctricas producen este tipo de radiación. No debemos de olvidar que la radiación ultravioleta es la componente principal de la radiación solar.
La energía de los fotones de la radiación ultravioleta es del orden de la energía de activación de muchas reacciones químicas lo que explica muchos de sus efectos.
El oxígeno se disocia en la ozonosfera por la acción de la radiación ultravioleta. Una molécula de oxígeno absorbe radiación de longitudes de onda en el intervalo entre 1600 Å y 2400 Å (o fotones de energía comprendida entre 7.8 eV y 5.2 eV) y se disocia en dos átomos de oxígeno.
O2+fotón→O+O
El oxígeno atómico producido se combina con el oxígeno molecular para formar ozono, O3, que a su vez se disocia fotoquímicamente por absorción de la radiación ultravioleta de longitud de onda comprendida entre 2400 Å y 3600 Å (o fotones de energía entre 5.2 eV y 3.4 eV).
O3+fotón→O+O2
Estas dos reacciones absorben prácticamente toda radiación ultravioleta que viene del Sol por lo que solamente llega una pequeña fracción a la superficie de la Tierra. Si desapareciese de la capa de ozono, la radiación ultravioleta destruiría muchos organismos a causa de las reacciones fotoquímicas.
La radiación ultravioleta y rayos X producidos por el Sol interactúa con los átomos y moléculas presentes en la alta atmósfera produciendo gran cantidad de iones y electrones libres (alrededor de 1011 por m3). La región de la atmósfera situada a unos 80 km de altura se denomina por este motivo ionosfera.
Algunas de las reacciones que ocurren más frecuentemente son:
NO+fotón→NO++e (5.3 eV)
N2+fotón→N2++e (7.4 eV)
O2+fotón→O2++e (5.1 eV)
He+fotón→He++e (24.6 eV)
Entre paréntesis se indica la energía de ionización. Como resultado de esta ionización tienen lugar muchas reacciones secundarias.
Rayos X
Si se aceleran electrones y luego, se hacen chocar con una placa metálica, la radiación de frenado produce rayos X. Los rayos X se han utilizado en medicina desde el mismo momento en que los descubrió Röntgen debido a que los huesos absorben mucho más radiación que los tejidos blandos. Debido a la gran energía de los fotones de los rayos X son muy peligrosos para los organismos vivos.
Rayos gamma .se producen en los procesos nucleares, por ejemplo, cuando se desintegran las sustancias radioactivas. Es también un componente de la radiación cósmica y tienen especial interés en astrofísica. La enorme energía de los fotones gamma los hace especialmente útiles para destruir células cancerosas. Pero son también peligrosos para los tejidos sanos por lo que la manipulación de rayos gamma requiere de un buen blindaje de protección.
Las ecuaciones de Maxwell. En el capítulo Electromagnetismo hemos estudiado la interacción electromagnética que está asociada con una propiedad característica de las partículas denominada carga eléctrica.
La interacción electromagnética se describe en términos de dos campos: el campo eléctrico E, y el campo magnético B, que ejercen una fuerza sobre una partícula cargada con carga q que se mueve con velocidad v.
F=q(E+v×B)
Los campos E y B vienen determinados por la distribución de las cargas y por sus movimientos (corrientes). La teoría del campo electromagnético se puede condensar en cuatro leyes denominadas ecuaciones de Maxwell que se pueden escribir de forma integral de la siguiente forma
Ley de Gauss para el campo eléctrico
Ley de Gauss para el campo magnético
Ley de Faraday-Henry
Ley de Ampère-Maxwell
Maxwell a partir de un análisis cuidadoso de las ecuaciones del campo electromagnético llegó a predecir la existencia de las ondas electromagnéticas. Fue Heinrich Hertz quién realizó las primeras experiencias con ondas electromagnéticas.
No es muy complicado obtener las ecuaciones de las ondas electromagnéticas a partir de la expresión en forma diferencial de las ecuaciones de Maxwell. Omitiremos esta deducción y señalaremos únicamente sus características esenciales.
Las ondas electromagnéticas están formadas por un campo eléctrico y un campo magnético perpendiculares entre sí y a la dirección de propagación. La dirección de propagación está dada por el vector E×B.
Las ondas electromagnéticas se propagan en el vacío con una velocidad c.

Para una onda electromagnética armónica las amplitudes de los campos eléctrico E0 y magnético B0 están relacionados, B0=E0/c.
Las ondas electromagnéticas transportan energía y momento lineal.
La energía electromagnética que atraviesa una sección S en la unidad de tiempo es
El momento lineal p por unidad de volumen de una onda electromagnética es el cociente entre la densidad de energía electromagnética y la velocidad c.
p=ε0(E×B)
El espectro electromagnético
Las ondas electromagnéticas cubren una amplia gama de frecuencias o de longitudes de ondas y pueden clasificarse según su principal fuente de producción. La clasificación no tiene límites precisos.
a región denominada AM comprende el intervalo de 530 kHz a 1600 kHz, y la región denominada FM de 88 MHz a 108 MHz. La región FM permite a las emisoras proporcionar una excelente calidad de sonido debido a la naturaleza de la modulación en frecuencia.

Las microondas se usan en el radar y otros sistemas de comunicación, así como en el análisis de detalles muy finos de la estructura atómica y molecular. Se generan mediante dispositivos electrónicos.
La radiación infrarroja Se subdivide en tres regiones, infrarrojo lejano, medio y cercano. Los cuerpos calientes producen radiación infrarroja y tienen muchas aplicaciones en la industria, medicina, astronomía, etc.

No hay comentarios.: